TY - JOUR
T1 - Wastewater-based epidemiology in countries with poor wastewater treatment - Epidemiological indicator function of SARS-CoV-2 RNA in surface waters
AU - Kolarević, Stoimir
AU - Micsinai, Adrienn
AU - Szántó-Egész, Réka
AU - Lukács, Alena
AU - Kračun-Kolarević, Margareta
AU - Djordjevic, Ana
AU - Vojnović-Milutinović, Danijela
AU - Marić, Jovana Jovanović
AU - Kirschner, Alexander K T
AU - Farnleitner, Andreas A H
AU - Linke, Rita
AU - Đukic, Aleksandar
AU - Kostić-Vuković, Jovana
AU - Paunović, Momir
N1 - Publisher Copyright:
© 2022
PY - 2022/10/15
Y1 - 2022/10/15
N2 - Wastewater-based epidemiology (WBE) surveillance of COVID-19 and other future outbreaks is a challenge for developing countries as most households are not connected to a sewerage system. In December 2019, SARS-CoV-2 RNA was detected in the Danube River at a site severely affected by wastewaters from Belgrade. Rivers are much more complex systems than wastewater systems, and efforts are needed to address all the factors influencing the adoption of WBE as an alternative to targeting raw wastewater. Our objective was to provide a more detailed insight into the potential of SARS-CoV-2 surveillance in Serbian surface waters for epidemiological purposes. Water samples were collected at 12 sites along the Sava and Danube rivers in Belgrade during the fourth COVID-19 wave in Serbia that started in late February 2021. RNA was concentrated using Amicon Ultra-15 centrifugal filters and quantified using RT-qPCR with primer sets targeting nucleocapsid (N1 and N2) and envelope (E) protein genes. Microbiological (faecal indicator bacteria and human and animal genetic faecal source tracking markers), epidemiological, physicochemical and hydromorphological parameters were analysed in parallel. From 44 samples, SARS-CoV-2 RNA was detected in 31, but only at 4 concentrations above the level of quantification (ranging from 8.47 × 103 to 2.07 × 104 gc/L). The results indicated that surveillance of SARS-CoV-2 RNA in surface waters as ultimate recipients could be used as an epidemiological early-warning tool in countries lacking wastewater treatment and proper sewerage infrastructure. The performance of the applied approach, including advanced sampling site characterization to trace and identify sites with significant raw sewage influence from human populations, could be further improved by adaptation of the methodology for processing higher volumes of samples and enrichment factors, which should provide the quantitative instead of qualitative data needed for WBE.
AB - Wastewater-based epidemiology (WBE) surveillance of COVID-19 and other future outbreaks is a challenge for developing countries as most households are not connected to a sewerage system. In December 2019, SARS-CoV-2 RNA was detected in the Danube River at a site severely affected by wastewaters from Belgrade. Rivers are much more complex systems than wastewater systems, and efforts are needed to address all the factors influencing the adoption of WBE as an alternative to targeting raw wastewater. Our objective was to provide a more detailed insight into the potential of SARS-CoV-2 surveillance in Serbian surface waters for epidemiological purposes. Water samples were collected at 12 sites along the Sava and Danube rivers in Belgrade during the fourth COVID-19 wave in Serbia that started in late February 2021. RNA was concentrated using Amicon Ultra-15 centrifugal filters and quantified using RT-qPCR with primer sets targeting nucleocapsid (N1 and N2) and envelope (E) protein genes. Microbiological (faecal indicator bacteria and human and animal genetic faecal source tracking markers), epidemiological, physicochemical and hydromorphological parameters were analysed in parallel. From 44 samples, SARS-CoV-2 RNA was detected in 31, but only at 4 concentrations above the level of quantification (ranging from 8.47 × 103 to 2.07 × 104 gc/L). The results indicated that surveillance of SARS-CoV-2 RNA in surface waters as ultimate recipients could be used as an epidemiological early-warning tool in countries lacking wastewater treatment and proper sewerage infrastructure. The performance of the applied approach, including advanced sampling site characterization to trace and identify sites with significant raw sewage influence from human populations, could be further improved by adaptation of the methodology for processing higher volumes of samples and enrichment factors, which should provide the quantitative instead of qualitative data needed for WBE.
KW - COVID-19/epidemiology
KW - Humans
KW - RNA, Viral
KW - SARS-CoV-2/genetics
KW - Waste Water
KW - Wastewater-Based Epidemiological Monitoring
KW - Water Purification
UR - http://www.scopus.com/inward/record.url?scp=85133165033&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2022.156964
DO - 10.1016/j.scitotenv.2022.156964
M3 - Journal article
C2 - 35764146
SN - 0048-9697
VL - 843
SP - 156964
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 156964
ER -