Vascular Hysteresis Loops and Vascular Architecture Mapping in Patients with Glioblastoma treated with Antiangiogenic Therapy

Andreas Stadlbauer, Max Zimmermann, Stefan Oberndorfer, Arnd Doerfler, Michael Buchfelder, Gertraud Heinz, Karl Roessler

Research output: Journal article (peer-reviewed)Journal article

15 Citations (Scopus)

Abstract

In this study, we investigated the variability of vascular hysteresis loop (VHL) shapes and the spatial heterogeneity of neovascularization and microvascular alterations using vascular architecture mapping (VAM) in patients with recurrent glioblastoma during bevacizumab mono-therapy. VAM data were acquired in 13 patients suffering from recurrent glioblastoma prior to and 3 months after bevacizumab treatment onset using a dual contrast agent injections approach as part of routine MRI. Two patients were additionally examined after the first cycle of bevacizumab to check for early treatment response. VHLs were evaluated as biomarker maps of neovascularization activity: microvessel type indicator (MTI) and curvature (Curv) of the VHL-long-axis. Early response to bevacizumab was dominated by reduction of smaller microvasculature (around 10 µm). In the 3-month follow-up, responding tumors additionally showed a reduction in larger microvasculature (>20 µm). VAM biomarker images revealed spatially heterogeneous microvascular alterations during bevacizumab treatment. Responding, non-responding, progressive, and remote-progressive tumor areas were observed. MTI may be useful to predict responding and non-responding tumor regions, and Curv to assess severity of vasogenic edema. Analysis of VHLs in combination with VAM biomarkers may lead to a new perspective on investigating the spatial heterogeneity of neovascularization and microvascular alterations in glioblastoma during antiangiogenic therapy.

Original languageEnglish
Article number8508
Pages (from-to)8508
JournalScientific Reports
Volume7
Issue number1
DOIs
Publication statusPublished - 01 Dec 2017

Keywords

  • Adult
  • Aged
  • Angiogenesis Inhibitors/therapeutic use
  • Bevacizumab/therapeutic use
  • Biomarkers, Tumor/analysis
  • Drug Monitoring
  • Female
  • Glioblastoma/diagnostic imaging
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Neovascularization, Pathologic/diagnostic imaging
  • Recurrence
  • Treatment Outcome

ASJC Scopus subject areas

  • Multidisciplinary

Fingerprint

Dive into the research topics of 'Vascular Hysteresis Loops and Vascular Architecture Mapping in Patients with Glioblastoma treated with Antiangiogenic Therapy'. Together they form a unique fingerprint.

Cite this