TY - JOUR
T1 - Pre-osteoblasts stimulate migration of breast cancer cells via the HGF/MET pathway
AU - Vallet, Sonia
AU - Bashari, Muhammad Hasan
AU - Fan, Feng Juan
AU - Malvestiti, Stefano
AU - Schneeweiss, Andreas
AU - Wuchter, Patrick
AU - Jäger, Dirk
AU - Podar, Klaus
N1 - Publisher Copyright:
© 2016 Vallet et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/3
Y1 - 2016/3
N2 - Introduction The occurrence of skeletal metastases in cancer, e.g. breast cancer (BC), deteriorates patient life expectancy and quality-of-life. Current treatment options against tumor-Associated bone disease are limited to anti-resorptive therapies and aimed towards palliation. There remains a lack of therapeutic approaches, which reverse or even prevent the development of bone metastases. Recent studies demonstrate that not only osteoclasts (OCs), but also osteoblasts (OBs) play a central role in the pathogenesis of skeletal metastases, partly by producing hepatocyte growth factor (HGF), which promotes tumor cell migration and seeding into the bone. OBs consist of a heterogeneous cell pool with respect to their maturation stage and function. Recent studies highlight the critical role of pre-OBs in hematopoiesis. Whether the development of bone metastases can be attributed to a particular OB maturation stage is currently unknown. Methods and Results Pre-OBs were generated from healthy donor (HD)-derived bone marrow stromal cells (BMSC) as well as the BMSC line KM105 and defined as ALPlow OPNlow RUNX2high OSX high CD166high. Conditioned media (CM) of pre-OBs, but not of undifferentiated cells or mature OBs, enhanced migration of metastatic BC cells. Importantly, HGF mRNA was significantly up-regulated in pre-OBs versus mature OBs, and CM of pre-OBs activated the MET signaling pathway. Highlighting a key role for HGF, CM from HGF-negative pre-OBs derived from the BMSC line HS27A did not support migration of BC cells. Genetically (siMET) or pharmacologically (INCB28060) targeting MET inhibited both HGF-and pre-OB CM-mediated BC cell migration.
AB - Introduction The occurrence of skeletal metastases in cancer, e.g. breast cancer (BC), deteriorates patient life expectancy and quality-of-life. Current treatment options against tumor-Associated bone disease are limited to anti-resorptive therapies and aimed towards palliation. There remains a lack of therapeutic approaches, which reverse or even prevent the development of bone metastases. Recent studies demonstrate that not only osteoclasts (OCs), but also osteoblasts (OBs) play a central role in the pathogenesis of skeletal metastases, partly by producing hepatocyte growth factor (HGF), which promotes tumor cell migration and seeding into the bone. OBs consist of a heterogeneous cell pool with respect to their maturation stage and function. Recent studies highlight the critical role of pre-OBs in hematopoiesis. Whether the development of bone metastases can be attributed to a particular OB maturation stage is currently unknown. Methods and Results Pre-OBs were generated from healthy donor (HD)-derived bone marrow stromal cells (BMSC) as well as the BMSC line KM105 and defined as ALPlow OPNlow RUNX2high OSX high CD166high. Conditioned media (CM) of pre-OBs, but not of undifferentiated cells or mature OBs, enhanced migration of metastatic BC cells. Importantly, HGF mRNA was significantly up-regulated in pre-OBs versus mature OBs, and CM of pre-OBs activated the MET signaling pathway. Highlighting a key role for HGF, CM from HGF-negative pre-OBs derived from the BMSC line HS27A did not support migration of BC cells. Genetically (siMET) or pharmacologically (INCB28060) targeting MET inhibited both HGF-and pre-OB CM-mediated BC cell migration.
UR - http://www.scopus.com/inward/record.url?scp=84961162418&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0150507
DO - 10.1371/journal.pone.0150507
M3 - Journal article
C2 - 26934743
AN - SCOPUS:84961162418
SN - 1932-6203
VL - 11
JO - PLoS ONE
JF - PLoS ONE
IS - 3
M1 - e0150507
ER -