Possibilities and challenges when using synthetic computed tomography in an adaptive carbon-ion treatment workflow

Barbara Knäusl*, Peter Kuess, Markus Stock, Dietmar Georg, Piero Fossati, Petra Georg, Lukas Zimmermann

*Corresponding author for this work

Research output: Journal article (peer-reviewed)Journal article

3 Citations (Scopus)


Background and purpose: Anatomical surveillance during ion-beam therapy is the basis for an effective tumor treatment and optimal organ at risk (OAR) sparing. Synthetic computed tomography (sCT) based on magnetic resonance imaging (MRI) can replace the X-ray based planning CT (X-rayCT) in photon radiotherapy and improve the workflow efficiency without additional imaging dose. The extension to carbon-ion radiotherapy is highly challenging; complex patient positioning, unique anatomical situations, distinct horizontal and vertical beam incidence directions, and limited training data are only few problems. This study gives insight into the possibilities and challenges of using sCTs in carbon-ion therapy. Materials and methods: For head and neck patients immobilised with thermoplastic masks 30 clinically applied actively scanned carbon-ion treatment plans on 15 CTs comprising 60 beams were analyzed. Those treatment plans were re-calculated on MRI based sCTs which were created employing a 3D U-Net. Dose differences and carbon-ion spot displacements between sCT and X-rayCT were evaluated on a patient specific basis. Results: Spot displacement analysis showed a peak displacement by 0.2 cm caused by the immobilisation mask not measurable with the MRI. 95.7% of all spot displacements were located within 1 cm. For the clinical target volume (CTV) the median D50% agreed within −0.2% (−1.3 to 1.4%), while the median D0.01cc differed up to 4.2% (−1.3 to 25.3%) comparing the dose distribution on the X-rayCT and the sCT. OAR deviations depended strongly on the position and the dose gradient. For three patients no deterioration of the OAR parameters was observed. Other patients showed large deteriorations, e.g. for one patient D2% of the chiasm differed by 28.1%. Conclusion: The usage of sCTs opens several new questions, concluding that we are not ready yet for an MR-only workflow in carbon-ion therapy, as envisaged in photon therapy. Although omitting the X-rayCT seems unfavourable in the case of carbon-ion therapy, an sCT could be advantageous for monitoring, re-planning, and adaptation.

Original languageEnglish
Pages (from-to)146-154
Number of pages9
JournalZeitschrift fur Medizinische Physik
Issue number2
Early online date25 Jun 2022
Publication statusPublished - May 2023
Externally publishedYes


  • Adaptive carbon-ion therapy
  • Deep learning
  • MR based workflow
  • Synthetic CT

ASJC Scopus subject areas

  • Biophysics
  • Radiological and Ultrasound Technology
  • Radiology, Nuclear Medicine and Imaging


Dive into the research topics of 'Possibilities and challenges when using synthetic computed tomography in an adaptive carbon-ion treatment workflow'. Together they form a unique fingerprint.

Cite this