TY - CHAP
T1 - Pathophysiological Roles of Auxiliary Calcium Channel α2δ Subunits
AU - Hessenberger, Manuel
AU - Haddad, Sabrin
AU - Obermair, Gerald J.
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023/1/5
Y1 - 2023/1/5
N2 - α
2δ proteins serve as auxiliary subunits of voltage-gated calcium channels, which are essential components of excitable cells such as skeletal and heart muscles, nerve cells of the brain and the peripheral nervous system, as well as endocrine cells. Over the recent years, α
2δ proteins have been identified as critical regulators of synaptic functions, including the formation and differentiation of synapses. These functions require signalling mechanisms which are partly independent of calcium channels. Hence, in light of these features it is not surprising that the genes encoding for the four α
2δ isoforms have recently been linked to neurological and neurodevelopmental disorders including epilepsy, autism spectrum disorders, schizophrenia, and depressive and bipolar disorders. Despite the increasing number of identified disease-associated mutations, the underlying pathophysiological mechanisms are only beginning to emerge. However, a thorough understanding of the pathophysiological role of α
2δ proteins ideally serves two purposes: first, it will contribute to our understanding of general pathological mechanisms in synaptic disorders. Second, it may support the future development of novel and specific treatments for brain disorders. In this context, it is noteworthy that the antiepileptic and anti-allodynic drugs gabapentin and pregabalin both act via binding to α
2δ proteins and are among the top sold drugs for treating neuropathic pain. In this book chapter, we will discuss recent developments in our understanding of the functions of α
2δ proteins, both as calcium channel subunits and as independent regulatory entities. Furthermore, we present and summarize recently identified and likely pathogenic mutations in the genes encoding α
2δ proteins and discuss potential underlying pathophysiological consequences at the molecular and structural level.
AB - α
2δ proteins serve as auxiliary subunits of voltage-gated calcium channels, which are essential components of excitable cells such as skeletal and heart muscles, nerve cells of the brain and the peripheral nervous system, as well as endocrine cells. Over the recent years, α
2δ proteins have been identified as critical regulators of synaptic functions, including the formation and differentiation of synapses. These functions require signalling mechanisms which are partly independent of calcium channels. Hence, in light of these features it is not surprising that the genes encoding for the four α
2δ isoforms have recently been linked to neurological and neurodevelopmental disorders including epilepsy, autism spectrum disorders, schizophrenia, and depressive and bipolar disorders. Despite the increasing number of identified disease-associated mutations, the underlying pathophysiological mechanisms are only beginning to emerge. However, a thorough understanding of the pathophysiological role of α
2δ proteins ideally serves two purposes: first, it will contribute to our understanding of general pathological mechanisms in synaptic disorders. Second, it may support the future development of novel and specific treatments for brain disorders. In this context, it is noteworthy that the antiepileptic and anti-allodynic drugs gabapentin and pregabalin both act via binding to α
2δ proteins and are among the top sold drugs for treating neuropathic pain. In this book chapter, we will discuss recent developments in our understanding of the functions of α
2δ proteins, both as calcium channel subunits and as independent regulatory entities. Furthermore, we present and summarize recently identified and likely pathogenic mutations in the genes encoding α
2δ proteins and discuss potential underlying pathophysiological consequences at the molecular and structural level.
KW - Brain disorders
KW - CACNA2D1–4
KW - Ca
KW - Gabapentin
KW - Pregabalin
KW - Synapse formation
KW - Synaptic transmission
KW - Synaptopathy
KW - Voltage-gated calcium channels
UR - http://www.scopus.com/inward/record.url?scp=85168653842&partnerID=8YFLogxK
U2 - 10.1007/164_2022_630
DO - 10.1007/164_2022_630
M3 - Chapter in book/report
C2 - 36598609
T3 - Handbook of Experimental Pharmacology
SP - 289
EP - 316
BT - Handbook of Experimental Pharmacology
PB - Springer
ER -