Hydrogels from TEMPO-Oxidized Nanofibrillated Cellulose Support In Vitro Cultivation of Encapsulated Human Mesenchymal Stem Cells

Ilias Nikolits, Sara Radwan, Falk Liebner, Wolf Dietrich, Dominik Egger, Farhad Chariyev-Prinz, Cornelia Kasper

Research output: Journal article (peer-reviewed)Journal article

4 Citations (Scopus)

Abstract

Mesenchymal stem cells (MSCs) are the most prominent type of adult stem cells for clinical applications. Three-dimensional (3D) cultivation of MSCs in biomimetic hydrogels provides a more physiologically relevant cultivation microenvironment for in vitro testing and modeling, thus overcoming the limitations of traditional planar cultivation methods. Cellulose nanofibers are an excellent candidate biomaterial for synthesis of hydrogels for this application, due to their biocompatibility, tunable properties, availability, and low cost. Herein, we demonstrate the capacity of hydrogels prepared from 2,2,6,6-tetramethylpiperidine-1-oxyl -oxidized and subsequently individualized cellulose-nanofibrils to support physiologically relevant 3D in vitro cultivation of human MSCs at low solid contents (0.2-0.5 wt %). Our results show that MSCs can spread, proliferate, and migrate inside the cellulose hydrogels, while the metabolic activity and proliferative capacity of the cells as well as their morphological characteristics benefit more in the lower bulk cellulose concentration hydrogels.

Original languageEnglish
Pages (from-to)543-551
Number of pages9
JournalACS Applied Bio Materials
Volume6
Issue number2
Early online date06 Feb 2023
DOIs
Publication statusPublished - 20 Feb 2023

Fingerprint

Dive into the research topics of 'Hydrogels from TEMPO-Oxidized Nanofibrillated Cellulose Support In Vitro Cultivation of Encapsulated Human Mesenchymal Stem Cells'. Together they form a unique fingerprint.

Cite this