TY - JOUR
T1 - Clinico-genetic spectrum of limb-girdle muscular weakness in Austria
T2 - A multicentre cohort study
AU - Krenn, Martin
AU - Tomschik, Matthias
AU - Wagner, Matias
AU - Zulehner, Gudrun
AU - Weng, Rosa
AU - Rath, Jakob
AU - Klotz, Sigrid
AU - Gelpi, Ellen
AU - Bsteh, Gabriel
AU - Keritam, Omar
AU - Colonna, Isabella
AU - Paternostro, Chiara
AU - Jäger, Fiona
AU - Lindeck-Pozza, Elisabeth
AU - Iglseder, Stephan
AU - Grinzinger, Susanne
AU - Schönfelder, Martina
AU - Hohenwarter, Christina
AU - Freimüller, Manfred
AU - Embacher, Norbert
AU - Wanschitz, Julia
AU - Topakian, Raffi
AU - Töpf, Ana
AU - Straub, Volker
AU - Quasthoff, Stefan
AU - Zimprich, Fritz
AU - Löscher, Wolfgang N
AU - Cetin, Hakan
N1 - Publisher Copyright:
© 2022 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.
PY - 2022/6
Y1 - 2022/6
N2 - BACKGROUND AND PURPOSE: Hereditary myopathies with limb-girdle muscular weakness (LGW) are a genetically heterogeneous group of disorders, in which molecular diagnosis remains challenging. Our aim was to present a detailed clinical and genetic characterization of a large cohort of patients with LGW.METHODS: This nationwide cohort study included patients with LGW suspected to be associated with hereditary myopathies. Parameters associated with specific genetic aetiologies were evaluated, and we further assessed how they predicted the detection of causative variants by conducting genetic analyses.RESULTS: Molecular diagnoses were identified in 62.0% (75/121) of the cohort, with a higher proportion of patients diagnosed by next-generation sequencing (NGS) than by single-gene testing (77.3% vs. 22.7% of solved cases). The median (interquartile range) time from onset to genetic diagnosis was 8.9 (3.7-19.9) and 17.8 (7.9-27.8) years for single-gene testing and NGS, respectively. The most common diagnoses were myopathies associated with variants in CAPN3 (n = 9), FKRP (n = 9), ANO5 (n = 8), DYSF (n = 8) and SGCA (n = 5), which together accounted for 32.2% of the cohort. Younger age at disease onset (p = 0.043), >10× elevated creatine kinase activity levels (p = 0.024) and myopathic electromyography findings (p = 0.007) were significantly associated with the detection of causative variants.CONCLUSIONS: Our findings suggest that an earlier use of NGS in patients with LGW is needed to avoid long diagnostic delays. We further present parameters predictive of a molecular diagnosis that may help to select patients for genetic analyses, especially in centres with limited access to sequencing.
AB - BACKGROUND AND PURPOSE: Hereditary myopathies with limb-girdle muscular weakness (LGW) are a genetically heterogeneous group of disorders, in which molecular diagnosis remains challenging. Our aim was to present a detailed clinical and genetic characterization of a large cohort of patients with LGW.METHODS: This nationwide cohort study included patients with LGW suspected to be associated with hereditary myopathies. Parameters associated with specific genetic aetiologies were evaluated, and we further assessed how they predicted the detection of causative variants by conducting genetic analyses.RESULTS: Molecular diagnoses were identified in 62.0% (75/121) of the cohort, with a higher proportion of patients diagnosed by next-generation sequencing (NGS) than by single-gene testing (77.3% vs. 22.7% of solved cases). The median (interquartile range) time from onset to genetic diagnosis was 8.9 (3.7-19.9) and 17.8 (7.9-27.8) years for single-gene testing and NGS, respectively. The most common diagnoses were myopathies associated with variants in CAPN3 (n = 9), FKRP (n = 9), ANO5 (n = 8), DYSF (n = 8) and SGCA (n = 5), which together accounted for 32.2% of the cohort. Younger age at disease onset (p = 0.043), >10× elevated creatine kinase activity levels (p = 0.024) and myopathic electromyography findings (p = 0.007) were significantly associated with the detection of causative variants.CONCLUSIONS: Our findings suggest that an earlier use of NGS in patients with LGW is needed to avoid long diagnostic delays. We further present parameters predictive of a molecular diagnosis that may help to select patients for genetic analyses, especially in centres with limited access to sequencing.
KW - Anoctamins/genetics
KW - Austria/epidemiology
KW - Cohort Studies
KW - Humans
KW - Muscle Weakness/genetics
KW - Muscular Diseases
KW - Muscular Dystrophies, Limb-Girdle/diagnosis
KW - Mutation
KW - Pentosyltransferases/genetics
UR - http://www.scopus.com/inward/record.url?scp=85126042173&partnerID=8YFLogxK
U2 - 10.1111/ene.15306
DO - 10.1111/ene.15306
M3 - Journal article
C2 - 35239206
SN - 1351-5101
VL - 29
SP - 1815
EP - 1824
JO - European Journal of Neurology
JF - European Journal of Neurology
IS - 6
ER -