TY - JOUR
T1 - Long-term impact of basin-wide wastewater management on faecal pollution levels along the entire Danube River
AU - Kirschner, Alexander K T
AU - Schachner-Groehs, Iris
AU - Kavka, Gerhard
AU - Hoedl, Edith
AU - Kovacs, Adam
AU - Farnleitner, Andreas H
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/7/8
Y1 - 2024/7/8
N2 - The Danube River is, at 2857 km, the second longest river in Europe and the most international river in the world with 19 countries in its catchment. Along the entire river, faecal pollution levels are mainly influenced by point-source emissions from treated and untreated sewage of municipal origin under base-flow conditions. In the past 2 decades, large investments in wastewater collection and treatment infrastructure were made in the European Union (EU) Member States located in the Danube River Basin (DRB). Overall, the share of population equivalents with appropriately biologically treated wastewater (without disinfection) has increased from 69% to more than 85%. The proportion of tertiary treatment has risen from 46 to 73%. In contrast, no comparable improvements of wastewater infrastructure took place in non-EU Member States in the middle and lower DRB, where a substantial amount of untreated wastewater is still directly discharged into the Danube River. Faecal pollution levels along the whole Danube River and the confluence sites of the most important tributaries were monitored during four Danube River expeditions, the Joint Danube Surveys (JDS). During all four surveys, the longitudinal patterns of faecal pollution were highly consistent, with generally lower levels in the upper section and elevated levels and major hotspots in the middle and lower sections of the Danube River. From 2001 to 2019, a significant decrease in faecal pollution levels could be observed in all three sections with average reduction rates between 72 and 86%. Despite this general improvement in microbiological water quality, no such decreases were observed for the highly polluted stretch in Central Serbia. Further improvements in microbiological water quality can be expected for the next decades on the basis of further investments in wastewater infrastructure in the EU Member States, in the middle and lower DRB. In the upper DRB, and due to the high compliance level as regards collection and treatment, improvements can further be achieved by upgrading sewage treatment plants with quaternary treatment steps as well as by preventing combined sewer overflows. The accession of the Western Balkan countries to the EU would also significantly boost investments in wastewater infrastructure and water quality improvements in the middle section of the Danube. Continuing whole-river expeditions such as the Joint Danube Surveys is highly recommended to monitor the developments in water quality in the future.
AB - The Danube River is, at 2857 km, the second longest river in Europe and the most international river in the world with 19 countries in its catchment. Along the entire river, faecal pollution levels are mainly influenced by point-source emissions from treated and untreated sewage of municipal origin under base-flow conditions. In the past 2 decades, large investments in wastewater collection and treatment infrastructure were made in the European Union (EU) Member States located in the Danube River Basin (DRB). Overall, the share of population equivalents with appropriately biologically treated wastewater (without disinfection) has increased from 69% to more than 85%. The proportion of tertiary treatment has risen from 46 to 73%. In contrast, no comparable improvements of wastewater infrastructure took place in non-EU Member States in the middle and lower DRB, where a substantial amount of untreated wastewater is still directly discharged into the Danube River. Faecal pollution levels along the whole Danube River and the confluence sites of the most important tributaries were monitored during four Danube River expeditions, the Joint Danube Surveys (JDS). During all four surveys, the longitudinal patterns of faecal pollution were highly consistent, with generally lower levels in the upper section and elevated levels and major hotspots in the middle and lower sections of the Danube River. From 2001 to 2019, a significant decrease in faecal pollution levels could be observed in all three sections with average reduction rates between 72 and 86%. Despite this general improvement in microbiological water quality, no such decreases were observed for the highly polluted stretch in Central Serbia. Further improvements in microbiological water quality can be expected for the next decades on the basis of further investments in wastewater infrastructure in the EU Member States, in the middle and lower DRB. In the upper DRB, and due to the high compliance level as regards collection and treatment, improvements can further be achieved by upgrading sewage treatment plants with quaternary treatment steps as well as by preventing combined sewer overflows. The accession of the Western Balkan countries to the EU would also significantly boost investments in wastewater infrastructure and water quality improvements in the middle section of the Danube. Continuing whole-river expeditions such as the Joint Danube Surveys is highly recommended to monitor the developments in water quality in the future.
UR - http://www.scopus.com/inward/record.url?scp=85197671609&partnerID=8YFLogxK
U2 - 10.1007/s11356-024-34190-0
DO - 10.1007/s11356-024-34190-0
M3 - Journal article
C2 - 38977549
SN - 0944-1344
VL - 31
SP - 45697
EP - 45710
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 33
ER -