TY - JOUR
T1 - Immunomodulatory drugs thalidomide and lenalidomide affect osteoblast differentiation of human bone marrow stromal cells in vitro
AU - Bolomsky, Arnold
AU - Schreder, Martin
AU - Meißner, Tobias
AU - Hose, Dirk
AU - Ludwig, Heinz
AU - Pfeifer, Sabine
AU - Zojer, Niklas
PY - 2014
Y1 - 2014
N2 - Osteoblastic activity is severely impaired in active myeloma, contributing to the development of myeloma bone disease. Although several drugs reducing osteoclast-mediated bone degradation are in clinical use, approaches to specifically augment bone formation are at an early stage of development. Novel antimyeloma drugs not only directly act on myeloma cells, but impact on the microenvironment as well. Proteasome inhibitors were previously shown to have bone anabolic properties. Here we investigated the impact of immunomodulatory drugs (IMiDs) on bone formation. Treatment with thalidomide and lenalidomide significantly inhibited osteoblast development invitro, as reflected by a reduction of alkaline phosphatase activity and matrix mineralization. The effects were upheld in combination with bortezomib. The IMiDs upregulated Dickkopf-1 (DKK1) and inhibin beta A, but blocking these molecules was not able to restore regular osteoblast development. We therefore performed gene expression profiling to reveal other osteoblast regulatory factors that might be involved in the IMiD-mediated effect on osteoblast development. Our data indicate that osteoblast inhibition is possibly an IMiD-class effect mediated by downregulation of major osteoblast regulators (e.g., runt-related transcription factor 2, distal-less homeobox 5, pleiotrophin) and concurrent induction of secreted inhibitors of osteoblast formation (e.g. DKK1, activin A, gremlin 1). Our results highlight the need for bone anabolic therapeutics in myeloma, counteracting the negative impact of prolonged IMiD exposure on bone metabolism.
AB - Osteoblastic activity is severely impaired in active myeloma, contributing to the development of myeloma bone disease. Although several drugs reducing osteoclast-mediated bone degradation are in clinical use, approaches to specifically augment bone formation are at an early stage of development. Novel antimyeloma drugs not only directly act on myeloma cells, but impact on the microenvironment as well. Proteasome inhibitors were previously shown to have bone anabolic properties. Here we investigated the impact of immunomodulatory drugs (IMiDs) on bone formation. Treatment with thalidomide and lenalidomide significantly inhibited osteoblast development invitro, as reflected by a reduction of alkaline phosphatase activity and matrix mineralization. The effects were upheld in combination with bortezomib. The IMiDs upregulated Dickkopf-1 (DKK1) and inhibin beta A, but blocking these molecules was not able to restore regular osteoblast development. We therefore performed gene expression profiling to reveal other osteoblast regulatory factors that might be involved in the IMiD-mediated effect on osteoblast development. Our data indicate that osteoblast inhibition is possibly an IMiD-class effect mediated by downregulation of major osteoblast regulators (e.g., runt-related transcription factor 2, distal-less homeobox 5, pleiotrophin) and concurrent induction of secreted inhibitors of osteoblast formation (e.g. DKK1, activin A, gremlin 1). Our results highlight the need for bone anabolic therapeutics in myeloma, counteracting the negative impact of prolonged IMiD exposure on bone metabolism.
UR - http://www.scopus.com/inward/record.url?scp=84904859122&partnerID=8YFLogxK
U2 - 10.1016/j.exphem.2014.03.005
DO - 10.1016/j.exphem.2014.03.005
M3 - Journal article
SN - 0301-472X
VL - 42
SP - 516
EP - 525
JO - Experimental Hematology
JF - Experimental Hematology
IS - 7
ER -